Empirical Bayes approaches to mixture problems and waveletregressionIain

نویسندگان

  • Iain M. Johnstone
  • Bernard W. Silverman
چکیده

We consider model selection in a hierarchical Bayes formulation of the sparse normal linear model in which individual variables have, independently, an unknown prior probability of being included in the model. The focus is on orthogonal designs, which are of particular importance in nonparametric regression via wavelet shrinkage. Empirical Bayes estimates of hyperparameters are easily obtained via the EM algorithm, and this approach is contrasted with a recent conditional likelihood proposal. Our model selection approach yields a straightforward method for data dependent threshold selection in wavelet regression. Performance on standard test sets and data examples is encouraging, especially if a translation invariant form of the estimator is used. Since the method produces separate threshold estimates on each wavelet resolution level, it also comfortably handles stationary correlated error structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules

Estimation of mixture densities for the classical Gaussian compound decision problem and their associated (empirical) Bayes rules is considered from two new perspectives. The first, motivated by Brown and Greenshtein (2009), introduces a nonparametric maximum likelihood estimator of the mixture density subject to a monotonicity constraint on the resulting Bayes rule. The second, motivated by Ji...

متن کامل

Unobserved Heterogeneity in Longitudinal Data An Empirical Bayes Perspective

Abstract. Empirical Bayes methods for Gaussian and binomial compound decision problems involving longitudinal data are considered. A new convex optimization formulation of the nonparametric (Kiefer-Wolfowitz) maximum likelihood estimator for mixture models is used to construct nonparametric Bayes rules for compound decisions. The methods are illustrated with some simulation examples as well as ...

متن کامل

Mixtures of g-priors for Bayesian Variable Selection

Zellner’s g-prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of g-priors as an alternative to default g-priors that resolve many of the problems with the original formulation, while maintaining the computational tractability that has made the g prior so popular. We present theoreti...

متن کامل

Mixtures of g-priors for Bayesian Variable Selection

Zellner’s g-prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of g-priors as an alternative to default g-priors that resolve many of the problems with the original formulation, while maintaining the computational tractability that has made the g-prior so popular. We present theoreti...

متن کامل

A nonparametric empirical Bayes framework for large-scale multiple testing.

We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998